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Monte Carlo simulation of a two dimensional anisotropic plane 
rotator model 

by S. ROMANO 
Department of Physics ‘A. Volta’, The University, and unita’ G.N.S.M.-C.N.R./ 

C.1.S.M.-M.P.I., via A. Bassi 6 ,  1-27100 Pavia, Italy 

(Received 29 March 1989; accepted 13 May 1989) 

We have ytudied a classical system, consisting of two-component unit vectors 
(plane rotators) associated with a two dimensional square lattice, and interacting 
via the nearest neighbour pair potential(s) 

W, = cc[a cos (m$,) cos (mq5k) + b sin (m4,) sin (m&)] 

c = f l ,  & > 0 ,  a 2 0 ,  b > 0 .  
where m is a positive integer and (&) are the angles defining the orientation of the 
plane rotators in an arbitary reference frame. The two potential models W, and 
- W ,  possess essentially the same properties in the absence of an external field 
(spin-flip symmetry); moreover, for given values of a and b, all of the potential 
models W, have the same partition function, and several mean values can be 
defined in a way which is independent ofm. This model has been proven rigorously 
to possess a Kosterlitz-Thouless transition when a = b, and to possessea low 
temperature order-disorder transition when 0 < Ibl < a; when m = 2, this 
entails the existence of nematic- or antinematic- like order, depending on the sign 
of c.  We have chosen b = 0, and characterized the system quntitatively by Monte 
Carlo simulation; calculations were carried out in the nematic representation 
(c = - 1, m = 2) .  Simulation results suggest a second order transition taking 
place at z* = kT /c  = 1.315 5 0.015; the molecular field treatment over esti- 
mates this value by 50 per cent. 

1. Introduction 
It is by now well known that isotropic interactions in classical, continuous spin 

systems associated with a lattice of low dimensionality (d = 1, 2) can support 
orientational order at finite temperature only when sufficiently long ranged [ 1, 21; on 
the other hand, the ordering transition can be brought about by anisotropic nearest 
neighbour interactions when d 2 2 [3]. This paper studies a potential model of the 
latter kind, known rigorously to possess an ordering transition at finite temperature, 
and uses numerical simulation to elucidate its physical properties. 

We consider a classical system, consisting of n-component unit vectors {uk}, 
associated with a two dimensional square lattice; let xk denote their coordinates, and 
let y k  be their translationally invariant pair interaction potential, restricted to nearest 
neighbours. When n = 2, the unit vectors lie in a plane (which can be identified with 
the lattice plane); they are then referred to as plane rotators, and their orientation is 
uniquely defined by a set of angles {4k} .  We restrict our discussion to anisotropic 
nearest neighbour potentials of the form 
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458 S. Romano 

the subscript 1 refers to Cartesian components, and the larger of the two numbers a 
and b can be taken as unity. The potential is invariant with respect to the simultaneous 
inversion of all the spins, but not with respect to their simultaneous rotation by an 
arbitrary angle. Moreover, in the absence of an external field, the two potential 
models Vand - Vpossess essentially the same properties (spin-flip symmetry); we are 
then reduced to consider only ferromagnetic coupling between all components. 

When n = 2, an additional symmetry property has to be considered [4, 51: we 
generalize equation (1) slightly to give 

W, = W,,], = c ~ [ u  cos ( m 4 j )  cos (m$k)  + b sin (m$j) sin (m$,)], (3) 

where m is a positive integer. For given values of a and 6,  all of the potential models 
W, possess the same partition function, and the structural properties can be defined 
in a way independent of m, and so actually calculated using any convenient value of 
m. A number of rigorous results are known for these models. 

(a) When n = 2, a = b = 1, the system disorders at all finite temperatures, but 
a Kosterlitz-Thouless transition is known to exist [6], involving a low temperature 
phase with power law decay of correlations and infinite susceptibility; the transition 
temperature is estimated to be T,* = 0.89 f 0.001, where T,* = kTjs [7-91. 

(b) When n = 3 and 0 6 (a/b) < (2 /q)z ,  a Kosterlitz-Thouless transition is also 
known to exist, involving correlations in the lattice plane [lo]; here q is the coordi- 
nation number and z is the transition temperature for the corresponding isotropic 
plane rotator model. 

(c) When n = 2, 3 and 0 6 Ibl < a = 1, the system is known to possess a low 
temperature transition to an orientationally ordered phase, and the transition 
temperature is estimated to be T,* = 0(1 - b) [3, 11-13]; moreover, for y1 = 2 and 
m = 2, the ordered phase can be interpreted as nematic-like (c = - 1) or antinematic- 
like (c = + 1) as well. There has been some debate about nematic-like orientational 
order in low dimensional systems [ 14, 151, whose absence has been proved rigorously 
in some cases [16]; here we can rely on its proven existence for the specified range of 
parameters. Similar results also hold for the quantum ferromagnetic counter-parts of 
these models [17]. 

As a step towards a better understanding of its physical behaviour, we decided to 
carry out Monte Carlo simulations for an anisotropic plane rotator model; simulation 
requires a more precise definition of the potential, thus we chose b = 0, both in order 
to have a pronounced effect, and for computational ease. We also chose the nematic 
interpretation, i.e. c = - 1, m = 2 in equation (3), so that the model actually used 
in the simulation is 

w, = - & cos (24j) cos (24,). (4) 
The common reference direction for defining the angles can be identified with the 
lattice x axis. 

2. Computational aspects 
The calculations were carried out on a square sample, consisting of N = L2 

particles, and surrounded by a periodic replica of itself; sample size effects were 
examined by repeating calculations at some temperatures with L = 10,20,30,40,50; 
the results reported here refer to L = 50. In the ordered region, sample size effects 
seem to saturate for L 2 30, whereas spurious order in the disordered region 
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MC simulation of a 2 0  rotator model 459 

decreases with increasing L, roughly like 1/L. Calculations were started from the 
ground state configuration at the lowest temperature investigated and performed in 
cascade, i.e. the equilibrated configuration produced at one temperature was used to 
start both the production run at the same temperature and the equilibration run at 
the next higher one. Equilibration runs took between 2000 and 4000 cycles (where one 
cycle corresponds to N attempted moves), and production runs took between 4000 
and 10,000 cycles; subaverages for evaluating statistical errors were calculated over 
macrosteps consisting of 200 cycles. 

Calculated quantities include the potential energy, the configurational specific 
heat C, (both as a fluctuation quantity and by least square fitting and numerical 
differentiation of the energy), the orientational correlation functions and the order 
parameters. The singlet orientational distribution function (SODF) was also calcu- 
lated at one temperature in the ordered region (T* = 1.25). Structural quantities can 
be defined in a way independent of m [4, 51; for example the magnetic moment per 
particle and its mean square values are given by 

Mi = <F(m))m, AT = (d"F(m)*F(m)I)m, ~2 = < ~ ( m > - F ( m ) > ~ ,  (5 )  

F(m) = ( l i N )  [CoS(m 4 k l e l  + sin(m4k)e21, (6 )  
N 

k =  I 

where e,  and e2 are the orthogonal unit vectors of the square lattice, and (. . .), 
denotes an average with respect to the potential W,. 

We can also define m-independent orientation correlation functions by 

G,(r) = (cos[pm(4, - 4k)])m, as functions of r = Ix, - xkl; p = 1, 2, (7) 
these were calculated at a few selected temperatures, in order to save computer time. 

Nematic order parameters, T2 and T4, can be defined and calculated as discussed 
in detail elsewhere [18-201, i.e. via the second rank ordering tensor 

Q i p  = '(uiu,), - d i p  (8) 
and its fourth rank counterpart. Moreover, since s in4  is an odd function of its 
argument, whereas C O S ~  is even, the condition b = 0 entails in this case 

(sin(pm4,)>, = 0, vj (9 4 
(sin(pm4,,)sin(pm4k))m = 0, .i f k, (9 4 

( U i U p > 2  = ~ & 4 3 2 7  (U,UpU,U,)2 = ~,6,,(U;Ut)*, (104  

( lob)  PI, = F2, F2p = U / N )  (i k =  I cos(pmA)) m ; 

i.e. the ordering tensors are diagonal, and the director coincides with the lattice x axis; 
this was verified in the course of simulation, to within the statistical errors. 

The singlet orientational distribution function was calculated at T* = 1.25, inside 
the ordered region, over a chain consisting of 10000 cycles, and we analysed a 
configuration every second cycle, according to the procedure reported elsewhere 
[19, 21, 221; such a length was needed in order to achieve reasonable statistics. In the 
present case the distribution function is an even function of cos 9, where 9 is the angle 
formed by the individual molecule with the director; it can be expanded as [19] 

r 1 

S(9) = ( l / n )  1 + 2 1 a,,cos(2k9) 1 k>O 
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460 S .  Romano 

where the quantities are even rank order parameters; taking into account the 
underlying a symmetry, 9 can be restricted between 0 and 4 2 .  

We recall that the usual procedure for calculating order parameters and the singlet 
distribution function [ 18-22] need to compensate for director fluctuations. In the 
present case, the very anisotropy of the interaction keeps the director pinned in the 
ordered phase, so that the angle 9 in equation (1 1) can be identified with the angle 9, 
defining the particle orientations in the lattice frame; director pinning is also known 
in other simulation studies (e.g. [23]). 

3. Results and comparison with other treatments 
Results for the potential energy, the specific heat and the order parameters are 

plotted in figures 1 and 3, and indicate a disordering transition taking place at scaled 
temperatures between 1.3 and 1.35. The energy and order parameter results suggest 
a continuous change across the transition, and specific heat results suggest a weak, 
possibly logarithmic, singularity; on the whole, this seems to point to a second order 
[24, 251 phase transition. We have fited the results for the order parameter over a 
certain range [T:, T,*](T;E < T;” < 1.3125, i.e. inside the ordered region), using the 
functional form [24, 251 

T;(T*) = (T,* - T*)b (12) 

I Î 0 

I 
01 I I I I 

1 1 . 5  2 2.5 
T* 

Figure 1. Results for the potential energy; the relative statistical error is usually not greater 
than 0.5 per cent. 
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;i 
t 
9 

m * 
**  

01 I I I 
1 1.5 2 2.5 

T *  

Figure 2. The configurational specific heat: fluctuation quantities with error bars, and results 
obtained by least-square fitting of the energy. 

and determined the two parameters (transition temperature and critical exponent) by 
means of the general non-linear least square program MINUIT in the CERN library; 
we also tried different values of TT and T;, and consistently found 

T,* = 1.3150 f 0.0025, B = 0.183 k 0.003. (1 3) 
However, the numbers quoted (returned by the fitting programme) are not the whole 
story: comparison with other models where exact results are also known (e.g. [26]) or 
sample size effects have been investigated more extensively (e.g. [20,27]), suggests that 
T,* is affected by an uncertainty of the order of a percent, and that the estimate of j? 
is erroneously large. We thus propose T,* = 1.3 15 & 0.01 5; as for critical exponents, 
the present system is expected to belong to the same universality class as its one 
component (discrete) counterpart, i.e. the Ising model, for which T, * = 2.269, 
p = l/8, v]  = 1/4. The three component counterpart of the present model (a = 1, 
b = 0, n = 3 in equation (1)) also belongs to the same universality class, and its 
transition temperature has been estimated to be T,* = 0.88 & 0.01 [27]. 

The disordering transition is known to be weakly first order in real nematics and 
for various short range potential models studies in three dimensions, where the order 
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I +++ & 

Figure 3. Results for the order parameters (a) T2; (b)  F4. 

parameter at the transition ranges typically between 0.3 and 0.5 (e.g. [20,23, 28, 291). 
The correlation functions G(r) (see figure 4) were found to decrease with distance in 
an essentially monotonic way, and to converge to their asymptotic values F& [19] in 
the ordered phase. In the ordered region G , ( r )  is well fitted by the functional form 

Gl(r) = C I  + c Z / ( C ~  + v'). (14) 
In the disordered region, GI should tend to zero as r tends to infinity; owing to finite 
sample size and periodicity, we found for GI ( r )  a long distance limit of the order of 
0.005. In order to compensate for the esidual order, we have fitted G , ( r )  to the 
functional form [7, 81 

Gl(r) = C I  + h(r) + h(L - r); (154  
h(r) = c, exp(-sr)/(c, + rY);  0 < r < L/2. (15b) 

h(r) has a rather general and flexible functional form, consistent with known or 
expected asymptotic behaviour of the correlation function (i.e. exponential decay, 
inverse power law or the product of the two [24, 251). Some fitting parameters are 
reported in the table, and inclusion of the correction term h(L - r) did not change 
appreciably the quality of the fit for T* > 1-35. If we try to fit G , ( r )  in the ordered 
region by the sum of h(r) and a constant term, then the best-fit value of the parameter 
s is found to be zero to within a small error. 
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Figure 4. Plots of the orientational correlation functions at the temperature T* = 1.25: 
(a) Gl(r); (b) G2(r); the correlation functions G(R)  are defined in the text. 

Fitting parameters for the correlation function GI (see equations (14) and (15)), as a function 
of temperature. 

T* 4 S 

1.250 1.35 - 
1.275 1.08 - 
1.300 0.82 - 

1.3125 0.54 - 
1.325 0.40 0.052 
1.350 0.62 0.079 
1.375 0.68 0.083 
1.400 0.76 0.148 

( f 0.03) ( f 0.004) 

A simple molecular field approximation [28, 291 can be developed, leading to the 
one particle potential of mean torque 

where T2;,MF is determined by the usual self-consistency condition 

- 
v(4) = - 4T22,MF cos (24), (16) 

T’2,MF = l l ( @ ) / l O ( @ > ?  @ = 4T2,MF/T* (17) 
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464 S. Romano 

and I k  are modified Bessel functions of order k. Upon solving the equation numeri- 
cally, T 2 , M F  is found to decrease continuously to zero at the temperature TZMF = 2, 
and the transition is found to be second order [30, 311; the molecular field approxi- 
mation gives the following critical exponents [24, 251 

a = 0, /? = 1/2. (18) 

The transition temperature is here overestimated by 50 per cent, in contrast to the 
reasonable success of the molecular field approach for nearest-neighbour nematogenic 
models in three dimensions [20, 23, 28, 291. The molecular field approach works 
reasonably well also for some isotropic long range models of low dimensionality 
(d = 1, 2), where it overestimates the transition temperature by 20 per cent at worst 
[5, 321, and its critical exponents are confirmed by renormalization group results 
[33, 341. 

At the transition temperature, the correlation function GI is predicted to possess 
the asymptotic power law behaviour 124, 251 

(19) 

Our simulation results cannot claim to allow an accurate determination of the critical 
quantities, which requires larger sample sizes (and greater computational resources); 
a crude estimate based on the results in the table gives q = 0.50 k 0.05, which is too 
large by a factor two. 

As for the singlet orientational distribution function (figure 5), the coefficients a2k 
in equation (1 1) were directly calculated from a 201 bin histogram [21,22], which was 
smoothed by regrouping its bins and reducing their number to 41; as a double-check, 
the order parameters were recalculated from the smoothed histogram via a linear 
least-square fit. We obtained a rather good fit by truncating the expansion at k = 6, 
and found a variance of 0.000033 and the values: 

G,(,.) 0~ ,.-(d-Z+rl). 

a2 = 0.624 f 0.002, a4 = 0.319 0.002, a6 = 0.111 0.002, 

a, = 0.035 f 0.002, a,, = 0.009 +_ 0.002, = 0.002 & 0.002. 

Truncation at k = 4 gave a variance of 0.0006, and the same values for the coef- 
ficients a2 to a,; the coefficients a, and a4 agree with the values of T2 and T4, obtained 
as averages over the whole Monte Carlo chain, i.e. 0.627 f 0-008 and 0.319 f 0.001. 
The molecular field treatment of nematic models predicts for S(9) an expression of the 
form [30, 311 

r -3 

S(8) = exp b, 4- bZkcoS(2k9) , 1 k > O  J 
where the coefficients b,, are also predicted to depend on the order parameters; for the 
present model this means b = 0, k > 1. Truncation of the series in equation (20) at 
k = 2 gave a variance of 0.002, and inclusion of higher order terms up to k = 4 
reduced it to 0.00005. This contrasts with other simulated short range nematic 
potential models in three dimensions and with experimental data on real ones [35-371, 
where a good fit was obtained by truncating the series in equation (20) at k = 1. 
Comparison with other known results indicates that the combination of low dimen- 
sionality, anisotropy and short range character of the interaction makes this potential 
model rather different from the molecular field limit. 
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Figure 5. The plot of the singlet orientational distribution function determined at 
T* = 1.25. 

The present calculations were carried out on, among other machines, a VAX 8350 
computer, belonging to the Sezione di Pavia of Istituto Nazionale di Fisica Nucleare 
(INFN); computer time on a CRAY machine was allocated by the Italian Consiglio 
Nazionale delle Ricerche (CNR). The author wishes to thank Professor G. R. 
Luckhurst (Department of Chemistry, University of Southampton) for helpful dis- 
cussion and suggestions. 
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